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“active” deformation usually the following inequal- 

tlT > 1) 

T= 

(0.1) 

(0.2) 

Thus, the boundary 

tions from the region 

equation 

which separates the region of elastic deforma- 

of plastic deformations, is determined by the 

T=C (0.3) 

where C is the intensity of the shear stresses Tat the instant of 

loading under consideration. According to (0.3) in the process of 

active deformation the yield surface gradually expands in all 

directions, remaining similar to its initial shape, However, in real- 

ity, the deformation not only alters the dimensions of the yield sur- 

face but also changes its shape. Moreover, it causes the displacement 

of the yield surface as a whole, and as a result of this. the point 

uij = 0 ceases to be the center of the region of elastic deformations. 

Recently much attention was devoted to explaining the changes of 

shape of the yield surface [1.2,3 1. Very little attention was devoted, 

from the theoretical point of view, to the prbblem of the displacement 

of the yield surface as a whole. The presence. however, of a very pro- 

nounced Bauschinger effect in most materials indicates the fact that 

Reprint Order No. PMM 7. 

104 



?heory of plasticity and residual microstresses 105 

such displacements, without any doubt, take place and that they are 

quite considerable. (Parenthetically, the usual equation of the flow 

boundary (0.3) gives a.Bauschinger effect with a reversed sign, i.e. 

leads to its erroneous evaluation not only quantitatively but qUali- 

tatively as well). The present paper contains an attempt to develop 

a theory of plasticity which would incorporate the displacements of 

the center of the region of elastic deformations. We shall, however, 

neglect the changes of the shape of the yield surfac’e. assuming that 

the role of this factor can be sufficiently appraised on the basis of 

the results obtained by other authors. 

The investigations of F. Edelman and D.C. Drucker [4 1 and of 

A. Iu. Ishlinskii [ 11 ] treat the same problem. In [4 1 means of con- 

structing the theory of plasticity which takes into account the 

Bauschinger effect is only slightly indicated. In (11 ] another 

version of the theory of plasticity is proposed which is based on the 

assumptions that the strain hardening is linear, and that the yield 

surface is displaced as a rigid body. This version of the theory, 

which deserves serious attention on its own merits, is included in 

the following theory as one of its limiting cases, (the other one is 

the classical theory of plastic flow). 

1. Relations between stresses and plastic strains 

Let the yield surface at the instant the first plastic deformations 

occur be determined by the equation 

where 

(l-.2) 

and oT is the yield stress in simple tension, If we assume that in the 

process of deformation the yield surface remains similar to its initial 

form, but that it undergoes at the same time some translatory displace- 

ment, then its equation (at an arbitrary instant of loading) will be ex- 

pressed as 

where 

and where a constant (? corresponds to the value of the invariant To at 

the instant of loading considered. ‘Ihe components of the symmetric 

tensor of the second rank sij, introduced above, (it has dimensions of 

the stress tensor), are the coordinates of the center of the region of 

elastic deformations in the system 0, 1. 
a.l 
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This tensor has the following obvious properties: 

(a) it is equal to zero at the instant of appearance of first plastic 

deformations, since then the equality (1.3) has to reduce to (1.1); 

(b) it remains constant at the neutral loading, (that is at a loading 

along the yield surface), since in this case the region of elastic de- 

formations must remain at rest; 

fc) Sij vary during the active loading, and are determined by the 

plastic strains. 

tVe shall call sij the residual microstress tensor, and aij* the 

active stress tensor. The meaning of this terminology will be clear from 

what follows. 

Let us assume that the plastic strain increment tensor is completely 

determined by the active stress tensor and its increment. Ihen, by 

analo,g with the most accepted version of the theory of plastic flow, we 

can write, (for materials which exhibit isotropic behavior under simple 

loads), the following relations 

{la;; = stjol df (T”) ( 1 .*-)I 

Here f(‘j”’ f is the loading function, to be determined experimentally. 
Its mechanical significance follows from the equality 

dA” = qjo’dSijP = 21'02dj (I .C) 

From this 

(1.i) 

Thus, f(?" ) is directly related to the work of the active stresses 

along the plastic strain paths. Furthermore, as it follows from (I.?), 

in the relations (1.5) a hypothesis is made to the effect that the above- 

mentioned work depends only on the initial and terminal values of the 

intensity of the active shear stresses. 

The case when the yield surface is determined by the equation 

To= CT = W~,T = const (1.8) 

should be considered separately. In this case it preserves, in the 

process of the deformation, not only its form, but also all its dimen- 

sions, thus being displaced in the uij space as a rigid hotly. Here the 

procedure should be similar to that in l&uss' theory, i.e. (1.5) is re- 

placed by a relation 

dc$’ = sii”‘dh (1 .ff) 

The material which obeys (1.8) will be called the material with "an 
ideal Bauschinger effect". For such a material this effect is precisely 
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equivalent to the effect of strainhardening taken with reversed sign. 

Usually, however, the Rauschinger effect is less pronounced than the 

strainhardening effect. The relationships (1.5) or (1.81, (1.9) are in 

themselves not sufficient to determine the plastic strain path from a 

given loading path (or vice versa), because at the loading the true 

stress tensor Oi. is given and not the tensor 0i.O. Thus, the above given 

formulas should (, e supplemented by the relations ips between the tensor lY 

.s.' and plastic strains. However, in connection with this, an immediate 

q$stion arises: what should be the form of this relationship? Should it 

have a form of non-integrable differential relations analogous to (1.5), 

or should it be thought of in the form of a functional dependence, which 

directly expresses Sij by ~ij pT In the next section it will be demons- 

trated, on the basis of physical considerations, that the latter appears 

to be more probable. Based upon this consideration, we shall write 

1 
EijP= 2g Sij (I. IO) 

where g is a function of the invariants of the tensor s,.. 
"J 

In the sequel we shall assume that g is a function of T, only, where 

Ts = I/f sijsij (1.11) 

The theory of plasticity based on the formulas (1.81, (1.9) and (1.10) 

(for g = go = const.) was advanced by A.Iu. Ishlinskii, [ll I . 

It remains to determine the elastic strains. We shall assume, (as 

is always done in the theory of plasticity), that the tensor of elastic 

strains is connected with the stress tensor "ii by Hooke's law 

O/j = KEiiY$j + 2G (EijY)’ (1.12) 

where K is the bulk modulus, G the shear modulus, (~ijy)' are the com- 
ponents of the elastic strain deviator tensor. In conclusion of this 

Section, we would like to mention that according to (1.5) or (1.9) the 

plastic strain tensor is identical with its deviator. Thus, according to 

(1.101, the residual stress tensor sij has the same property. It is 

possible to formulate a more complicated variant of this theory, which 

will not neglect the plastic changes of volume, and accordingly, will not 

neglect the residual mean normal stress. However, it would hardly be 

appropriate to dwell on this any longer in this paper, whose aim it is 

to present the basic ideas of the proposed theory and not to exhaust all 

the possibilities inherent in it, 

2. Some physical considerations which support the proposed 
formulas 

The relationships (1.5) were written down by analogy with the theory 
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of flow. The relationships (1.101, based on the notion that the tensors 

sij and t ii' depend upon one another according to the principle of 

elastic interrelation, were proposed without any supporting argument. 

However, neither the relationship (1.5) nor (1.10) is at all obvious. As 

a matter of fact, (1.5) asserts, for instance, that the plastic strain 

increment tensor is similar to the active stress tensor, u..'. The 

question is asked, why is it similar to this tensor and not'to the true 

stress tensor aij ? It is also not clear why sij and E~J' should be 

connected by the relationships which are independent o f' the deformation 
paths. To clarify all this we shall introduce the following considera- 

tions. 

It was noticed already long ago that there exists a certain analogy 

between the resistance to plastic deformation and dry friction. Thus, 

for instance, the behavior of an ideally elasto-plastic body in simple 

tension and compression could be represented by the displacement of one 

end of a spring, whose other end is attached to the body placed on a 

horizontal plane, (Fig.1). 

Fig. 1. 
This analogy could be extended to the case of combined application of 

two stresses, say of a normal stress on. = u and shear stress D 

In this case the equation of the yield surface is 
V=r' 

(2.1) 
where 

x= $a, Y=L'c 
V 

(24 

'Ihe components of the strain deviator tensor c'zx and 6' correspond- 

ing to stresses u and r may be compared with the displacemetis u and v 

of the ends of two springs, attached at a right angle to a body placed 

on a horizontal plane. If the forces X and Y satisfy the equality (2.11, 

then the frictional force is balanced by the resultant of the forces in 

both springs. 

Next, let one of the forces (X, say) be increased by an infinitesimal 
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amount AX (AF is considered to be always positive, A F > 0). Then the 
body starts to move on the plane in the direction of the resultant of 
the X and Y forces and not in the direction of the increased force. ‘lhis 
is because in the former direction the frictional force is balanced. 

Fig. 2. 
‘Ihus, from the mechanical analogy presented above, it follows that 

the plastic strain increment tensor should be coaxial with the stress 
tensor, as it is cornnonly accepted in the theory of plastic flow, and 
not with the stress increment tensor. 

There are three possible ways to extend this analogy to materials 
which exhibit a strain-hardening effect: 

(a) to consider that strain hardening is an irreversible effect and 
can be interpreted as a continuous increase of the frictional force in 
the process of active deformation; 

(b) to consider that strain hardening is caused by the internal 
elastic forces which are resisting plastic deformation; 

(c) a combination of (a) and (b). 

If we accept (a), then the above shown mechanical model (based on 
considerations used previously) would lead us to the concept of the 
yield surface expanding uniformly in all directions, and to the coaxial- 
ity of the tensors d6.J and a.J’, i.e. 
of the plastic flow &ory. 

‘1 
would lead us to the hypotheses 

If we assume that the effect of strain hardening is due to the elastic 
forces then we get another picture shown in Fig.3. 

Consider , as before, a body which is placed on a plane and is under 
the action of two forces X and Y by means of two mutually perpendicular 
springs. In this case we have to attach two more springs to the body 
opposite to the previous ones (Fig.4). The conditions for balancing the 
frictional force (equation of the yield surface) in this case will be 
expressed in the following way: 

I/(X -X1)2 + (Y - Y,)2 = $ Qy7 (2.3) 

where X, and Y1 are the forces in the additional springs. 
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Fig. 3. Fig. 4. 

Thus, in the case under consideration, the yield surface (in the plane 

x= 2/30, y= 2/l’% 7) is represented by a circle with constant radius 

2/3 oT and with the center at 

If the force X is increased by an infinitesimal amount AX, (such 

that the resultant of the forces X, Y, X1 and Y1 ,would exceed the 

frictional force), then the body starts to move to a new equilibrium 

position. ‘lhe vector of this displacement will be directed along the 

resultant of the forces F(n,y) and F 
1 

(n,y) (shown in Fig.4 by a dotted 

line), and not along the direction o the external force F(x,y) nor 

along its increment. ‘lhis is so because the frictional force is balanced 

only in the direction of the resultant of the forces Fh, y) and Fl (r, y). 

It is easy to notice that equations (1.8), (1.9) and (1.10) in the 

theory of plasticity correspond to the behavior of the above-described 

mechanical system. 

In fact, the equality (1.8) asserts that the yield surface does not 

change during the deformation - neither its shape nor its size. The 

relationship (1.9) asserts that the tensors d 6 ii’ and “ij’ - Si’ are 

similar and therefore coaxial. Finally, formulas (1.10) assert t at E J !I 
“1 

is an elastic strain tensor with respect to the stresses s... ‘Ihe physical 

significance of sij consists of the following: they are tl?ke hidden 

n internal” ( [ 5 1 , pp. 136-137) elastic microstresses which appear in the 

body during the plastic deformation. After the removal of the loading 

these stresses remain in it since they cannot by themselves overcome 

frictional forces which oppose plastic deformation. 

It is also possible to analyze the behavior of a mechanical system 

represented by (c), where strain hardening is not totally an elastic 

effect. In this case the condition for balancing the frictional force in 

the two-dimensional case will have the following form 

1/(X - X,)2 + (Y - Y,)2 = p (2.4) 
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where X, Y, X1 and Y are related to the stresses u, r .s and 
indicated above. In t2.4) 

t as 
p represents an invariant quantity which is 

monotonically increasing during the active deformation, and it is bounded 
by the following inequality: 

+~s2+352= ~X2+Ya>p>$uT (2.5) 

For the lower bound of p we will get a yield surface (2.3), which 
corresponds to an ideal Bauschinger effect, and for the upper bound a 
uniformly expanding yield surface with stationary center given by (0.3). 

Applying to the case (c) the same considerations as previously, we 
come to the conclusion that in this case the plastic strain increment 
tensor should be coaxial with the active stress tensor dij” = “ij - Si ., 
and not with the true stress tensor CT... Moreover, s.+, as in case (b 3 
represent elastic residual stresses wh4i’ch characterizi’the displacement 

, 

of the center of the yield surface. 

Formulas (1.5) and (1.10) correspond to the case (c). Furthermore, the 
function f(Z’O) represents in these formulas the plastic part of the 
strain hardening, while the function g(T,) represents its elastic part. 

These two functions have to be determined experimentally from tension 
tests, followed by compression, 

Ihe plastic characteristics of real quasi-isotropic bodies are best 
described by the scheme (c ). 

Fig. 5. 

It should be mentioned that the material characterized by the scheme 
(b), i.e. material exhibiting an ideal Bauschinger effect is, because of 
its mechanical properties, closer to real materials than that which is 
characterized by the scheme (a), This is obvious from Fig.5, where @=F, 
CK) = F,, OC =F . ‘Ihe circle (a) represents the yield surface with fixed 
center; circle P b) represents the yield surface displaced as a rigid 
body; circle (c) represents the yield surface which exhibits the 
Ekuschinger effect more or less in the same way as it is encountered in 
the real materials; the circle T is an initial yield surface, In view of 
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this, the case of an ideal Eauschinger effect which is described by 
formulas (1.8), (1.9) and (1.10) represents considerable interest and 
deserves further study. 

From the foregoing it is now clear why in the proposed theory the 
plastic strain increment tensor was assumed to be of the same type as 
the active stress tensor U. .O = ~ij - s ., and not as the tensor “ii. It 
is also clear 

‘I 
why the components s. 

plastic strains 
lj wtfe expressed in terms of the 

in a similar way to the principle of elastic relation- 
ships. Furthermore, the terminology used to denote sij as “residual” 
stresses is now clear, for the stresses “ii remain in the body even 
after the removal of the external loads, since they cannot themselves 
overcome plastic resistance. 

Remark I. In paper [ 6 I attention was directed to a contradiction in 

which one may be trapped in drawing an analogy between friction and 

resistance to plastic deformations, if an attempt is made to account for 

the influence of the mean normal stress on plastic shear. The modern 

theory of plasticity, however, generally neglects this influence, and we 

followed, like others, this pattern. There is no difficulty, however, if 

it should be required in introducing into a proposed theory the corres- 

ponding refinement by including in the theory the well-known notion of a 

plastic potential. 

Remark 2. In drawing above an analogy with dry friction, we limited 
ourselves to the analysis of a particular case, where only two stresses, 

u = u and u = r, were different from zero. However. the same analogy 

cii be extendig to the most general case. namely, to any case of plastic 

resistance of the quasi-isotropic materials and for an arbitrary loading. 

Indeed, it can be represented by friction acting on a body being dis- 

placed in five-dimensional space [7 I. In this case to each deviator 

there corresponds some vector, and the initial yield surface is a sphere 

with tne center at the origin of the coordinate system. In a two- 

dimensional case the aforementioned space degenerates into a Euclidian 

plane and an abstract picture of a hyper-body which is displaced in a 
five-dimensional space is reduced to the simpler picture which we used 

before. 

3. Integration of relationships between the stresses and 
strains for some special forms of combined loading 

In the experimental work quite frequently the following loading paths 

are .used. 

(A) Thin-walled circular cylinder with initial stresses oil = oo, 

O12 = ro and initial residual stresses sil = so, .s12 = to is subjected 
to additional extension up to uil = u with a constant ai2 = r = ro. 

(B) ‘Ihe same case, but instead of being subjected to the additional 
tension, the cylinder is subjected to an additional twist up to the 
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stresses o12 = r (with all = uo). 

(C) Thin-walled circular cylinder, initially prestressed into the 

113 

plastic range up to the stress u = uo, and then subjected simultaneously 

to tension and torsion, the stresses being varied in accordance with the 

law 

0-U.,=,1/& (c = con&) (3.1) 

We shall now determi.le plastic strains for these three cases assuming 

an ideal Bauschinger effect and a linear strain hardening. In all the 

&ove formulated problems 

‘211 = al, a22 = agg r: 0, 312 = =, =13 - u23 - -0 

%1= s, se2 = s33= +, $2 = t, s23 = s13 ? 0 (3.2) 

In accordance with this, (1.8) has the form: 

($0 - s>*+ $(T - t)" = f UT2 (3.3) 

and (1.9) and (1.10) are reduced to 

dqlJ = (+J - s) d)r, dq2p = (T - t) dh (3.4) 

ellP= 
1 

2goS’ q2p = - I t 
2g0 (3.5) 

Because of the assumption of linearity of the strain hardening, go is 

constant. Eliminating 6 ij' from (3.4) and (3.5) we arrive at the follow- 

ing expressions which connect true stresses with residual stresses 

ds = ($ a -s) dA*, dt = (T - t) dh*, )i* = 2goA (3.6) 

!A) Let D = oc, r = r,,, s = so, t = to for X* = 0, and let o be in- 

creased and r kept constant. From (3.6) it follows then 

t = Cc-A* + ‘co.= (to - TV) e--A* + T (3.7) 

Because of (3.7) and (3.3) we obtain further 

$3- “+J, VI - k2e--2A* , k = !?!. (Q - to) 
=T 

(3.8) 

Su'~~tituting (3.8) into the right-hand side of the first equality in 

(3.6) and integrating, taking into account the initial conditions and 

relationships which must exist between them because of (3.31, we have 

where 

s=so--+T(x-&,)++Th -- ( 1+x 1-x0 
1+zo l-x (3.9) 

-- 
x = VI - kae-@* , xl) = =0- 312 be 

@T 
(3.10) 
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Formulas (3.7) and (3.9) may be reduced to 

1 
s+a-orth~], t=r,--aT 

Jf$ chu 

Here 

(3.11) 

(3.12) 

03) This case differs from the previous one only in that during the 
process of loading r varies and o remains constant, and o = uc. I&la- 
tions (3.6) can be integrated in an analogous way to the case CA). The 
following are final formulas 

5 A--:, OT 
3 \ O-ch 2 J t = +--thV 

v-3 
where 

T’ = g (7 - ~0) + PC,, th PO = ‘$ ~~~ - to) 

(3.13) 

(3.14) 

(Cl To study this case, define a new variable 4 by the following 
equations 

so --s= $arcos(?, y-_t=- sin y (3.15) 

‘thus, (3.3) is identically satisfied. Determining s and t from (3.15) 
and substituting into (3.6) we get 

dc + aTsiqdy = qcosy,dh* (3.16) 

From this 

d7 - -cosy dp = I% sin ‘p dh* (3.17) 

)‘-&os y dr - sinyda = crTdcp (3.18) 

In the case (C) there exists a relationship between o and r during the 
process of loading, namely, relationship (3.11, which is 

d3 = l/r$-cd= (3.19) 

Substituting (3.19) in (3.18) we get 

OT 
d7 = Irk 

dg, OT dY 

cos ‘p - c sin ‘p 
~-------. 

yCJ cosa cosyo (3.20) 

where 

‘r=y+yo, tgy,==c (3.21) 
Integrating (3.20), we get 

1 +sinY 1 -sinyo 
- sinY 1 + sinTo 

1 -/- sin Y 1 -sin y0 
- sinY 1 +sinYo (3.22) 
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Next, using (3.151, we express the residual stresses as 

2 l s=,~o,-u~coscp+rr~sinyoln 
1/ 

1 +sinY 1 -sinyo 
I--sinYP l+sinyo 

-1 
t sin ‘9 + cos y. In 

J 
1 +sinY 1 -sin-y0 

1 

(3.23) 

I-sinY 1fsioyo 

Furthermore, expressing # from (3.22) in terms of r and substituting in 
(3.23), we arrive at the following final formulas 

where 

$32 Q-_o 
3 ( T E 

“r sh’r”---shYo 
t=r-..- 

JC~ ch V. ch T* 

Tc* = cT~~yO -I- VO, th V. = sin y. 

(3.24) 

(3.25) 

‘Ihe above problems could be also solved for a more general case where 
the strain hardening is linear but the Bauschinger effect is not ideal. 
For lack of apace, however, we shall not dwell on this any longer. We 
mention only that the starting relationships in this case have the follow- 
ing form 

ds = go 
2/3a-s 

T” dT”, dt =goo ‘_T’ dT” (gc, =;) 

where G and G 
respectfvely. A 

are 
fter 

found from formulas 

4. (Ihnptrison of 

(3.26) 

the moduli of elastic and plastic strain hardening 
the determination of s and t, plastic strains are 

(3.27) 

There are very many experimental results on hand on combined loading. 
The basic conclusions reached from them can be formulated briefly as 
follows. 

1. The experimental results, as a rule, fall between the results 
computed from the theory of plastic flow and the theory of small plastic 
deformations. 

2. The experimental curves are usually closer to the flow theory 
curves than to the deformation theory curves. This latter yields 
especially poor agreement with the experiments if during the process of 
loading the state of stress is varied rapidly. However, for relatively 
smooth loading paths the experimental curves are sometimes roughly 
equally close to the curves obtained from the flow theory as from the 
deformation theory. 

3. There is experimental evidence [8 I, which contradicts the assump- 
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tion of the coaxiality of the plastic strain increment tensor with the 
stress tensor u. . 

‘J 
To compare the proposed theory with experiments we shall use the 

results obtained in k8, 9 I. These results are sufficiently typical. 

Fig. 6. 

Fig. 6 shows strain curves t XP and t rYP which are obtained from a 
combined loading consisting of two stages: (11, compression to the stress 

0.J.. = - **I and (21, simultaneous action of compression and shear vary- 
ing in the following way: 

%x - = 0.052 
d*3.-t! 

Curve (u) corresponds to the flow theory, curve (b) to the deforma- 
tion theory and curve fc) to the authors’ theory in which the Ektuschinger 
effect is considered to bc ideal and the strain hardening linear. In the 
same figure the dots represent experimental data from [9 1, (p. 510). Tt 

can be seen that the theory suggested presently gives results which are 
closer to the experimental data than either the flow theory or the de- 

the same picture is obtained 
with the ex_x?rimental data given 

formation theory results. Approximately 
from comparison of these three theories 
in 19 1 for other loading paths. 

In C8 1 the loading consisted of the 

ing stages: (1) extension of a thin-wal 

torque; (2) extension without torsion, 

following consecutively alternat- 
led tube subjected to a constant 

etc. The author of [ 8 1 remarks 

that the second stage of loading was accompanied by a plastic untwisting 

of specimens, which clearly contradicts the flow theory, This result can 

be explTine& only if we drop the assumption that the stress tensor and 

the plastic strain increment tensor are coaxial. In Fig.7 the experi- 

mental data in [ 8 1 of the first two stages of the loading are compared 

with the flow theory (curve a>, with the deformation theory (curve b) 

and with the present theory (curve c). (Here, as previously, it is 

assumed that the Bauschinger effect is ideal and the strain hardening is 

linear.) 

It can be seen that the present theory again satisfactorily agrees 
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with the experiments. Moreover, it predicts the untwisting of the speci- 
mens, the fact which puzzled the author of f 8 1 . 

t l 

u I 6 8 r-8 

Fig.. 7. 

To evolve the present theory of plasticity, which accounts for the 
displacement of the center of the yield surface, it was necessary to 
introduce concepts of the residual microstresses and the active stresses. 
In the book by N.N. Davidenkov ES I, already quoted, the microstresses 
are held responsible for the Bauschinger effect, and they are considered 
to be elastic. In book I10 1 (pp. 2.07, 2101 reference is made to the 
micfostresse 3 in metals subjected to plastic deformations. Thus, the 
existence of the microstresses and thkir basic properties are well known 
to the metallurgists. However, until now, they were not incorporated into 
a mathematical description of the theory of plasticity. The present paper 
closes this gap, and it shows that the inclusion of the microstresses 
permits an explanation of such facts as the Bauschinger effect, the effect 
of non-coincidence of principal directions of the increments of plastic 
strains with the principal directions of the stresses, as was observed in 
[8 1. Finally, it permits us to explain the fact that the experimental 
curves usually fall between the curves obtained from the flow theory and 
the deformation theory. 

1. 

2. 

3. 

4. 
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